| | REVISIONS | | | |-----|--|-----------------|-----------------| | LTR | DESCRIPTION | DATE (YR-MO-DA) | APPROVED | | Α | Change to military drawing format. Add vendor CAGE 23223. Pages 6 and 7, table I: Guarantee Delta VIO/Delta P, RIN and PC. | 88-06-21 | W. Heckman | | В | Add vendor CAGE 27014. Editorial changes throughout. Changed to MIL-H-38534 format. | 91-02-06 | W. Heckman | | С | Changes in accordance with NOR 5962-R058-92. | 91-11-19 | Gregory Lude | | D | Changes in accordance with NOR 5962-R105-92. | 92-01-06 | Alan Barone | | Е | Changes in accordance with NOR 5962-R078-96. | 96-03-12 | K. A. Cottongim | | F | Remove CAGE codes 23223, 27014, and 64762. Changes to table I. | 98-07-01 | K. A. Cottongim | THE ORIGINAL FIRST PAGE OF THIS DRAWING HAS BEEN REPLACED. # **CURRENT CAGE CODE 67268** | REV |---|-------------------------|--------|-----------------------------------|----------------------------|-----------------------------------|---|---|----------------|---|-----|----|---|---|----|----|----|--|--|--|--| | SHEET | REV | SHEET | REV STATUS | S | | | RE\ | / | | F | F | F | F | F | F | F | F | F | F | | | | | | OF SHEETS | | | | SHE | EET | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | | | | PMIC N/A | | | PREPARED BY
Donald R. Osborne | | | | DEFENSE SUPPLY CENTER COLUMBUS P. O. BOX 3990 COLUMBUS, OHIO 43216-5000 | | | | | | | | | | | | | | | STANDARD MICROCIRCUIT CHECKED BY Robert M. Heber | | | | GOLUMBUS, OFFIC 43216-3000 | | | | | | | | | | | | | | | | | | DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL | | BLE | APPROVED BY
William K. Heckman | | | | MICROCIRCUIT, HYBRID, LINEAR, 1-AMPERE
POWER OPERATIONAL AMPLIFIER, THICK FILM | | | | | | | | | | | | | | | DEPAI
AND AGEN
DEPARTMEN | ICIES (| OF THE | | DRA | DRAWING APPROVAL DATE
85-11-04 | | | SIZE CAGE CODE | | | | | | | | | | | | | | AMSC | AMSC N/A REVISION LEVEL | | | | A 14933 85088 | I | F | | | SHE | ET | 1 | | OF | 10 | 0 | | | | | # 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents one product assurance class, class H (high reliability) and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). - 1.2 PIN. The PIN shall be as shown in the following example: 1.2.1 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows: | Device type | Generic number | <u>Circuit function</u> | |-------------|-------------------|---| | 01 | LH0021, MSK 0021B | High power operational amplifier (1-ampere output) externally compensated | 1.2.2 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|--------------------------------| | Υ | See figure 1 | 8 | Metal base flange mount (TO-3) | - 1.2.3 Lead finish. The lead finish shall be as specified in MIL-PRF-38534. - 1.3 Absolute maximum ratings. | Supply voltage range (±V _S) | ±18 V dc | |--|---------------------| | Input voltage range | ±15 V dc <u>1</u> / | | Power dissipation (PD) | 6 W <u>2</u> / | | Differential input voltage | ±30 V dc | | Peak output current | 2 A <u>3</u> / | | Output short circuit duration | Continuous 4/ | | Storage temperature range | -65° C to +150° C | | Lead temperature (soldering, 10 seconds) | +300°C | | Thermal resistance: | | | Junction-to-case (θ JC) | 2°C/W | | Junction-to-ambient (θ _{JA}) | 25° C/W | | Junction temperature (TJ) | +150°C | | | | 1.4 Recommended operating conditions. Ambient operating temperature range (T_A) -55°C to +125°C - $1/\sqrt{Rat}$ Rating applies for supply voltages above ±15 V. For supplies less than ±15 V, rating is equal to the supply voltage. - 2/ Rating applies at T_A = +25° C, without heat sink. - $\frac{3}{}$ Rating applies for R_{SC} = 0 ohms. - A/ Rating applies as long as package power rating is not exceeded. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 85088 | |---|------------------|----------------------------|---------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
F | SHEET 2 | #### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, and handbook</u>. The following specification, standards, and handbook form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solitation. #### **SPECIFICATION** #### DEPARTMENT OF DEFENSE MIL-PRF-38534 - Hybrid Microcircuits, General Specification for. #### STANDARDS #### DEPARTMENT OF DEFENSE MIL-STD-883 - Test Methods and Procedures for Microelectronics. MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. #### **HANDBOOK** #### DEPARTMENT OF DEFENSE MIL-HDBK-780 - Standard Microcircuit Drawings. (Unless otherwise indicated, copies of the specification, standards, and handbook are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. #### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item performance requirements for device class H shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 may include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for applicable device class. Therefore, the tests and inspections herein may not be performed for applicable device class (see MIL-PRF-38534). Futhermore, the manufacturers may take exceptions or use alternate methods to the tests and inspections herein and not perform them. However, the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. The modification in the QM plan shall not affect the form, fit, or function as described herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein. - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.2 herein and figure 1. - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2. - 3.2.3 Test circuit and waveforms. The test circuit and waveforms shall be as specified on figure 3. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 85088 | |---|------------------|----------------------------|---------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
F | SHEET 3 | - 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking of device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked as listed in QML-38534. - 3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSCC-VA) upon request. - 3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DSCC-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein. - 3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing. - 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. - 4.2 Screening. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply: - a. Preseal burn-in test, method 1030 of MIL-STD-883. (optional for class H) - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1030 of MIL-STD-883. - (2) T_A as specified in accordance with table I of method 1015 of MIL-STD-883. - b. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883. - (2) T_Δ as specified in accordance with table I of method 1015 of MIL-STD-883. - c. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 85088 | |---|------------------|----------------------------|---------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
F | SHEET 4 | | | | TABLE I. <u>Electrical performan</u> | ce character | istics. | | | | |---|------------------------|---|-------------------|----------------|------------|-------------|----------| | Test | Symbol | Conditions <u>1</u> /
-55° C ≤ T _A ≤ +125° C
unless otherwise specified | Group A subgroups | Device
type | Lir
Min | nits
Max | Unit | | Input offset voltage | V _{IO} | R _S ≤ 100Ω <u>2</u> / | 1 | 01 | | 3 | mV | | Offset voltage change with output power | ΔV _{IO}
ΔP | $\Delta VIO/\Delta P = \frac{VIO1 - VIO2}{\Delta P} \frac{3}{4}$ $\Delta P = 13.5 \text{ watts}$ | 1,2,3 | 01 | | 15 | μV/W | | Input offset current | lio | 2/ | 2,3 | 01 | | 100 | nA | | Input bias current | I _{IB} | 2/ | 1 | 01 | | 300 | nA | | Input resistance | R _{IN} | T _A = +25°C <u>4</u> / | 2,3 | 01 | 0.3 | 1 | μA
MΩ | | Common mode rejection ratio | CMRR | $R_S \le 100\Omega, V_{CM} = \pm 10 \text{ V} 5/$ | 4,5,6 | 01 | 70 | | dB | | Input voltage range | VINCM | <u>4</u> / | 1,2,3 | 01 | ±12 | | V | | Power supply rejection ration | PSRR | $R_S \le 100\Omega$, $V_S = \pm 5 \text{ V to } \pm 15 \text{ V}$ | 1,2,3 | 01 | 80 | | dB | | Voltage gain 6/ | Av | $V_{O} = \pm 10 \text{ V}, R_{L} = 1 \text{ k}\Omega,$
$T_{A} = +25^{\circ}\text{ C}$ | 4 | 01 | 100 | | V/mV | | | | $V_{O} = \pm 10 \text{ V}, R_{L} = 100\Omega \underline{4}/\underline{5}/$ | 4,5,6 | 01 | 25 | | - | | Output voltage swing | VO | R _L = 100Ω | 1,2,3 | 01 | ±13.5 | | V | | | | R _L = 10Ω, T _A = +25°C | 1 | | ±11 | | | | Output short circuit current | I _{SC} | $T_A = +25^{\circ}C, R_{SC} = 0.5\Omega$ | 1 | 01 | -0.8 | +1.6 | А | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 85088 | |---|------------------|----------------------------|---------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
F | SHEET 5 | # TABLE I. Electrical performance characteristics - Continued. | - | | | | | | | | | |------------------------|----------------|--|-------------------|----------------|----------------|-----|--------|--| | Test | Symbol | Conditions <u>1</u> /
-55° C ≤ T _A ≤ +125° C
unless otherwise specified | Group A subgroups | Device
type | Limits Min Max | | _ Unit | | | Supply current | ICC | VOUT = 0 V | 1,2,3 | 01 | | 3.5 | mA | | | Power consumption | PC | V _{OUT} = 0 V <u>4</u> / | 1,2,3 | 01 | | 105 | mW | | | Slew rate | SR | $A_V = 1$, $R_L = 100\Omega$, $T_A = +25^{\circ}C$ | 4 | 01 | 1.5 | | V/µs | | | Small signal rise time | t _r | T _A = +25°C | 9 | 01 | | 1 | μs | | | Small signal fall time | t _f | T _A = +25°C | 9 | 01 | | 1 | μs | | | Small signal overshoot | | T _A = +25°C | 4 | 01 | | 20 | % | | | | + | + | + | 1 | + | + | + | | - Unless otherwise specified, $\pm V_S = \pm 15$ V, $C_C = 3000$ pF. Specifications apply for ± 5 V $\leq \pm V_S \leq \pm 18$ V. V_{IOI} = V_{IO} at V_S = ± 15 V, V_O = O V, and I_O = 100 mA V_{IO2} = V_{IO} at V_S = ± 15 V, V_O = O V, and I_O = 1 A for 5 ms. - Parameter shall be guaranteed to the limits specified in table I for all lots not specifically tested. - Subgroups 5 and 6 shall be tested as part of device initial characterization and after design and process changes. Parameter shall be guaranteed to the limits specified for subgroups 5 and 6 for all lots not specifically tested. - The amplifier has a "dead band" when V_{OUT} is near zero volts. Typical values for the "dead band" are in the 50 to 200 μ V range. Open-loop gain is measured at V_{OUT} from ±0.5 V dc to ±10 V dc which is out of the range of the "dead band". | STANDARD | |--------------------------------| | MICROCIRCUIT DRAWING | | DEFENSE SUPPLY CENTER COLUMBUS | | COLUMBUS, OHIO 43216-5000 | | SIZE
A | | 85088 | |------------------|-------------------------|---------| | | REVISION LEVEL F | SHEET 6 | # Case outline Y. # NOTES: - 1. Dimensions are in inches - 2. Metric equivalents are given for general information only. FIGURE 1. Case outline. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 85088 | |---|------------------|----------------------------|----------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
F | SHEET 7 | FIGURE 2. <u>Terminal connections</u>. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 85088 | |---|------------------|----------------------------|---------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
F | SHEET 8 | TABLE II. Electrical test requirements. | MIL-PRF-38534 test requirements | Subgroups
(in accordance with
MIL-PRF-38534, group
A test table) | |---|---| | Interim electrical parameters | | | Final electrical parameters | 1*, 2, 3, 4, 5, 6, 9 | | Group A test requirements | 1, 2, 3, 4, 9 | | Group C end-point electrical parameters | 1, 2, 3 | ^{*} PDA applies to subgroup 1. - 4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein. - 4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows: - a. Tests shall be as specified in table II herein. - b. Subgroups 7, 8, 10, and 11 shall be omitted. - 4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534. - 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows: - a. End-point electrical parameters shall be as specified in table II herein. - b. Steady-state life test, method 1005 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - (2) T_A as specified in accordance with table I of method 1005 of MIL-STD-883. - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534. - 5. PACKAGING - 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 85088 | |---|------------------|----------------------------|---------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
F | SHEET 9 | # 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. - 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-7603. - 6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, P. O. Box 3990, Columbus, Ohio 43216-5000, or telephone (614) 692-0676. - 6.6 <u>Sources of supply</u>. Sources of supply are listed in QML-38534. The vendors listed in QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DSCC-VA and have agreed to this drawing. STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | SIZE
A | | 85088 | |------------------|-------------------------|-------------| | | REVISION LEVEL F | SHEET
10 | # STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN DATE: 98-07-01 Approved sources of supply for SMD 85088 are listed below for immediate acquisition only and shall be added to QML-38534 during the next revision. QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of QML-38534. | Standard | Vendor | Vendor | |----------------------|--------|----------------| | microcircuit drawing | CAGE | similar | | PIN <u>1</u> / | number | PIN <u>2</u> / | | 8508801YA | 51651 | MSK 0021B | | 8508801YC | 51651 | MSK 0021B | - 1/ The lead finish shown for each PIN, representing a hermetic package, is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine availability. - 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. Vendor CAGE Vendor name number and address 51651 M. S. Kennedy Corporation 8170 Thompson Road Cicero, NY 13039-9393 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in this information bulletin.